化妆品排行榜
  1. 首页 >
  2. 美妆资讯 >
  3. 美妆 >
  1. 面试官再问你 HashMap 底层原理,就把这篇文章甩给他看

美妆资讯
面试官再问你 HashMap 底层原理,就把这篇文章甩给他看
2023-08-05

推荐阅读:

学会这些微服务+Tomcat+NGINX+MySQL+Redis,再去面试阿里P7岗吧微服务+Docker完美教程,全部展现到这2份文档里面了!太强了,阿里P8面试官用1个多月,总结1000道题的Java面试文档!

前言

HashMap 源码和底层原理在现在面试中是必问的。因此,我们非常有必要搞清楚它的底层实现和思想,才能在面试中对答如流,跟面试官大战三百回合。文章较长,介绍了很多原理性的问题,希望对你有所帮助~

目录

本篇文章主要包括以下内容:

HashMap 的存储结构常用变量说明,如加载因子等HashMap 的四个构造函数tableSizeFor()方法及作用put()方法详解hash()方法,以及避免哈希碰撞的原理resize()扩容机制及原理get()方法为什么HashMap链表会形成死循环,JDK1.8做了哪些优化

正文

说明:本篇主要以JDK1.8的源码来分析,顺带讲下和JDK1.7的一些区别。

HashMap存储结构

这里需要区分一下,JDK1.7和 JDK1.8之后的 HashMap 存储结构。在JDK1.7及之前,是用数组加链表的方式存储的。

但是,众所周知,当链表的长度特别长的时候,查询效率将直线下降,查询的时间复杂度为 O(n)。因此,JDK1.8 把它设计为达到一个特定的阈值之后,就将链表转化为红黑树。

这里简单说下红黑树的特点:

每个节点只有两种颜色:红色或者黑色根节点必须是黑色每个叶子节点(NIL)都是黑色的空节点从根节点到叶子节点,不能出现两个连续的红色节点从任一节点出发,到它下边的子节点的路径包含的黑色节点数目都相同

由于红黑树,是一个自平衡的二叉搜索树,因此可以使查询的时间复杂度降为O(logn)。(红黑树不是本文重点,不了解的童鞋可自行查阅相关资料哈)

HashMap 结构示意图:

常用的变量

在 HashMap源码中,比较重要的常用变量,主要有以下这些。还有两个内部类来表示普通链表的节点和红黑树节点。

\n//默认的初始化容量为16,必须是2的n次幂\nstatic final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16\n\n//最大容量为 2^30\nstatic final int MAXIMUM_CAPACITY = 1 << 30;\n\n//默认的加载因子0.75,乘以数组容量得到的值,用来表示元素个数达到多少时,需要扩容。\n//为什么设置 0.75 这个值呢,简单来说就是时间和空间的权衡。\n//若小于0.75如0.5,则数组长度达到一半大小就需要扩容,空间使用率大大降低,\n//若大于0.75如0.8,则会增大hash冲突的概率,影响查询效率。\nstatic final float DEFAULT_LOAD_FACTOR = 0.75f;\n\n//刚才提到了当链表长度过长时,会有一个阈值,超过这个阈值8就会转化为红黑树\nstatic final int TREEIFY_THRESHOLD = 8;\n\n//当红黑树上的元素个数,减少到6个时,就退化为链表\nstatic final int UNTREEIFY_THRESHOLD = 6;\n\n//链表转化为红黑树,除了有阈值的限制,还有另外一个限制,需要数组容量至少达到64,才会树化。\n//这是为了避免,数组扩容和树化阈值之间的冲突。\nstatic final int MIN_TREEIFY_CAPACITY = 64;\n\n//存放所有Node节点的数组\ntransient Node<K,V>[] table;\n\n//存放所有的键值对\ntransient Set<Map.Entry<K,V>> entrySet;\n\n//map中的实际键值对个数,即数组中元素个数\ntransient int size;\n\n//每次结构改变时,都会自增,fail-fast机制,这是一种错误检测机制。\n//当迭代集合的时候,如果结构发生改变,则会发生 fail-fast,抛出异常。\ntransient int modCount;\n\n//数组扩容阈值\nint threshold;\n\n//加载因子\nfinal float loadFactor; \n\n//普通单向链表节点类\nstatic class Node<K,V> implements Map.Entry<K,V> {\n //key的hash值,put和get的时候都需要用到它来确定元素在数组中的位置\n final int hash;\n final K key;\n V value;\n //指向单链表的下一个节点\n Node<K,V> next;\n\n Node(int hash, K key, V value, Node<K,V> next) {\n this.hash = hash;\n this.key = key;\n this.value = value;\n this.next = next;\n }\n}\n\n//转化为红黑树的节点类\nstatic final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {\n //当前节点的父节点\n TreeNode<K,V> parent; \n //左孩子节点\n TreeNode<K,V> left;\n //右孩子节点\n TreeNode<K,V> right;\n //指向前一个节点\n TreeNode<K,V> prev; // needed to unlink next upon deletion\n //当前节点是红色或者黑色的标识\n boolean red;\n TreeNode(int hash, K key, V val, Node<K,V> next) {\n super(hash, key, val, next);\n }\n}

HashMap 构造函数

HashMap有四个构造函数可供我们使用,一起来看下:

//默认无参构造,指定一个默认的加载因子\npublic HashMap() {\n this.loadFactor = DEFAULT_LOAD_FACTOR; \n}\n\n//可指定容量的有参构造,但是需要注意当前我们指定的容量并不一定就是实际的容量,下面会说\npublic HashMap(int initialCapacity) {\n //同样使用默认加载因子\n this(initialCapacity, DEFAULT_LOAD_FACTOR);\n}\n\n//可指定容量和加载因子,但是笔者不建议自己手动指定非0.75的加载因子\npublic HashMap(int initialCapacity, float loadFactor) {\n if (initialCapacity < 0)\n throw new IllegalArgumentException(Illegal initial capacity: +\n initialCapacity);\n if (initialCapacity > MAXIMUM_CAPACITY)\n initialCapacity = MAXIMUM_CAPACITY;\n if (loadFactor <= 0 || Float.isNaN(loadFactor))\n throw new IllegalArgumentException(Illegal load factor: +\n loadFactor);\n this.loadFactor = loadFactor;\n //这里就是把我们指定的容量改为一个大于它的的最小的2次幂值,如传过来的容量是14,则返回16\n //注意这里,按理说返回的值应该赋值给 capacity,即保证数组容量总是2的n次幂,为什么这里赋值给了 threshold 呢?\n //先卖个关子,等到 resize 的时候再说\n this.threshold = tableSizeFor(initialCapacity);\n}\n\n//可传入一个已有的map\npublic HashMap(Map<? extends K, ? extends V> m) {\n this.loadFactor = DEFAULT_LOAD_FACTOR;\n putMapEntries(m, false);\n}\n\n//把传入的map里边的元素都加载到当前map\nfinal void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {\n int s = m.size();\n if (s > 0) {\n if (table == null) { // pre-size\n float ft = ((float)s / loadFactor) + 1.0F;\n int t = ((ft < (float)MAXIMUM_CAPACITY) ?\n (int)ft : MAXIMUM_CAPACITY);\n if (t > threshold)\n threshold = tableSizeFor(t);\n }\n else if (s > threshold)\n resize();\n for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {\n K key = e.getKey();\n V value = e.getValue();\n //put方法的具体实现,后边讲\n putVal(hash(key), key, value, false, evict);\n }\n }\n}

tableSizeFor()

上边的第三个构造函数中,调用了 tableSizeFor 方法,这个方法是怎么实现的呢?

static final int tableSizeFor(int cap) {\n int n = cap - 1;\n n |= n >>> 1;\n n |= n >>> 2;\n n |= n >>> 4;\n n |= n >>> 8;\n n |= n >>> 16;\n return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;\n}

我们以传入参数为14 来举例,计算这个过程。

首先,14传进去之后先减1,n此时为13。然后是一系列的无符号右移运算。

//13的二进制\n0000 0000 0000 0000 0000 0000 0000 1101 \n//无右移1位,高位补0\n0000 0000 0000 0000 0000 0000 0000 0110 \n//然后把它和原来的13做或运算得到,此时的n值\n0000 0000 0000 0000 0000 0000 0000 1111 \n//再以上边的值,右移2位\n0000 0000 0000 0000 0000 0000 0000 0011\n//然后和第一次或运算之后的 n 值再做或运算,此时得到的n值\n0000 0000 0000 0000 0000 0000 0000 1111\n...\n//我们会发现,再执行右移 4,8,16位,同样n的值不变\n//当n小于0时,返回1,否则判断是否大于最大容量,是的话返回最大容量,否则返回 n+1\nreturn (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;\n//很明显我们这里返回的是 n+1 的值,\n0000 0000 0000 0000 0000 0000 0000 1111\n+ 1\n0000 0000 0000 0000 0000 0000 0001 0000

将它转为十进制,就是 2^4 = 16 。我们会发现一个规律,以上的右移运算,最终会把最低位的值都转化为 1111 这样的结构,然后再加1,就是1 0000 这样的结构,它一定是 2的n次幂。因此,这个方法返回的就是大于当前传入值的最小(最接近当前值)的一个2的n次幂的值。

put()方法详解

//put方法,会先调用一个hash()方法,得到当前key的一个hash值,\n//用于确定当前key应该存放在数组的哪个下标位置\n//这里的 hash方法,我们姑且先认为是key.hashCode(),其实不是的,一会儿细讲\npublic V put(K key, V value) {\n return putVal(hash(key), key, value, false, true);\n}\n\n//把hash值和当前的key,value传入进来\n//这里onlyIfAbsent如果为true,表明不能修改已经存在的值,因此我们传入false\n//evict只有在方法 afterNodeInsertion(boolean evict) { }用到,可以看到它是一个空实现,因此不用关注这个参数\nfinal V putVal(int hash, K key, V value, boolean onlyIfAbsent,\n boolean evict) {\n Node<K,V>[] tab; Node<K,V> p; int n, i;\n //判断table是否为空,如果空的话,会先调用resize扩容\n if ((tab = table) == null || (n = tab.length) == 0)\n n = (tab = resize()).length;\n //根据当前key的hash值找到它在数组中的下标,判断当前下标位置是否已经存在元素,\n //若没有,则把key、value包装成Node节点,直接添加到此位置。\n // i = (n - 1) & hash 是计算下标位置的,为什么这样算,后边讲\n if ((p = tab[i = (n - 1) & hash]) == null)\n tab[i] = newNode(hash, key, value, null);\n else { \n //如果当前位置已经有元素了,分为三种情况。\n Node<K,V> e; K k;\n //1.当前位置元素的hash值等于传过来的hash,并且他们的key值也相等,\n //则把p赋值给e,跳转到①处,后续需要做值的覆盖处理\n if (p.hash == hash &&\n ((k = p.key) == key || (key != null && key.equals(k))))\n e = p;\n //2.如果当前是红黑树结构,则把它加入到红黑树 \n else if (p instanceof TreeNode)\n e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);\n else {\n //3.说明此位置已存在元素,并且是普通链表结构,则采用尾插法,把新节点加入到链表尾部\n for (int binCount = 0; ; ++binCount) {\n if ((e = p.next) == null) {\n //如果头结点的下一个节点为空,则插入新节点\n p.next = newNode(hash, key, value, null);\n //如果在插入的过程中,链表长度超过了8,则转化为红黑树\n if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st\n treeifyBin(tab, hash);\n //插入成功之后,跳出循环,跳转到①处\n break;\n }\n //若在链表中找到了相同key的话,直接退出循环,跳转到①处\n if (e.hash == hash &&\n ((k = e.key) == key || (key != null && key.equals(k))))\n break;\n p = e;\n }\n }\n //① 此时e有两种情况\n //1.说明发生了碰撞,e代表的是旧值,因此节点位置不变,但是需要替换为新值\n //2.说明e是插入链表或者红黑树,成功后的新节点\n if (e != null) { // existing mapping for key\n V oldValue = e.value;\n //用新值替换旧值,并返回旧值。\n //oldValue为空,说明e是新增的节点或者也有可能旧值本来就是空的,因为hashmap可存空值\n if (!onlyIfAbsent || oldValue == null)\n e.value = value;\n //看方法名字即可知,这是在node被访问之后需要做的操作。其实此处是一个空实现,\n //只有在 LinkedHashMap才会实现,用于实现根据访问先后顺序对元素进行排序,hashmap不提供排序功能\n // Callbacks to allow LinkedHashMap post-actions\n //void afterNodeAccess(Node<K,V> p) { }\n afterNodeAccess(e);\n return oldValue;\n }\n }\n //fail-fast机制\n ++modCount;\n //如果当前数组中的元素个数超过阈值,则扩容\n if (++size > threshold)\n resize();\n //同样的空实现\n afterNodeInsertion(evict);\n return null;\n}

hash()计算原理

前面 put 方法中说到,需要先把当前key进行哈希处理,我们看下这个方法是怎么实现的。

static final int hash(Object key) {\n int h;\n return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);\n}

这里,会先判断key是否为空,若为空则返回0。这也说明了hashMap是支持key传 null 的。若非空,则先计算key的hashCode值,赋值给h,然后把h右移16位,并与原来的h进行异或处理。为什么要这样做,这样做有什么好处呢?

我们知道,hashCode()方法继承自父类Object,它返回的是一个 int 类型的数值,可以保证同一个应用单次执行的每次调用,返回结果都是相同的(这个说明可以在hashCode源码上找到),这就保证了hash的确定性。在此基础上,再进行某些固定的运算,肯定结果也是可以确定的。

我随便运行一段程序,把它的 hashCode的二进制打印出来,如下。

public static void main(String[] args) {\n Object o = new Object();\n int hash = o.hashCode();\n System.out.println(hash);\n System.out.println(Integer.toBinaryString(hash));\n\n}\n//1836019240\n//1101101011011110110111000101000

然后,进行 (h = key.hashCode()) ^ (h >>> 16) 这一段运算。

//h原来的值\n0110 1101 0110 1111 0110 1110 0010 1000\n//无符号右移16位,其实相当于把低位16位舍去,只保留高16位\n0000 0000 0000 0000 0110 1101 0110 1111\n//然后高16位和原 h进行异或运算\n0110 1101 0110 1111 0110 1110 0010 1000\n^\n0000 0000 0000 0000 0110 1101 0110 1111\n=\n0110 1101 0110 1111 0000 0011 0100 0111

可以看到,其实相当于,我们把高16位值和当前h的低16位进行了混合,这样可以尽量保留高16位的特征,从而降低哈希碰撞的概率。

思考一下,为什么这样做,就可以降低哈希碰撞的概率呢?先别着急,我们需要结合 i = (n - 1) & hash 这一段运算来理解。

** (n-1) & hash 作用**

//②\n//这是 put 方法中用来根据hash()值寻找在数组中的下标的逻辑,\n//n为数组长度, hash为调用 hash()方法混合处理之后的hash值。\ni = (n - 1) & hash

我们知道,如果给定某个数值,去找它在某个数组中的下标位置时,直接用模运算就可以了(假设数组值从0开始递增)。如,我找 14 在数组长度为16的数组中的下标,即为 14 % 16,等于14 。 18的位置即为 18%16,等于2。

而②中,就是取模运算的位运算形式。以18%16为例

//18的二进制\n0001 0010\n//16 -1 即 15的二进制\n0000 1111\n//与运算之后的结果为\n0000 0010\n// 可以看到,上边的结果转化为十进制就是 2 。\n//其实我们会发现一个规律,因为n是2的n次幂,因此它的二进制表现形式肯定是类似于\n0001 0000\n//这样的形式,只有一个位是1,其他位都是0。而它减 1 之后的形式就是类似于\n0000 1111 \n//这样的形式,高位都是0,低位都是1,因此它和任意值进行与运算,结果值肯定在这个区间内\n0000 0000 ~ 0000 1111\n//也就是0到15之间,(以n为16为例)\n//因此,这个运算就可以实现取模运算,而且位运算还有个好处,就是速度比较快。

为什么高低位异或运算可以减少哈希碰撞

我们想象一下,假如用 key 原来的hashCode值,直接和 (n-1) 进行与运算来求数组下标,而不进行高低位混合运算,会产生什么样的结果。

//例如我有另外一个h2,和原来的 h相比较,高16位有很大的不同,但是低16位相似度很高,甚至相同的话。\n//原h值\n0110 1101 0110 1111 0110 1110 0010 1000\n//另外一个h2值\n0100 0101 1110 1011 0110 0110 0010 1000\n// n -1 ,即 15 的二进制\n0000 0000 0000 0000 0000 0000 0000 1111\n//可以发现 h2 和 h 的高位不相同,但是低位相似度非常高。\n//他们分别和 n -1 进行与运算时,得到的结果却是相同的。(此处n假设为16)\n//因为 n-1 的高16位都是0,不管 h 的高 16 位是什么,与运算之后,都不影响最终结果,高位一定全是 0\n//因此,哈希碰撞的概率就大大增加了,并且 h 的高16 位特征全都丢失了。

爱思考的同学可能就会有疑问了,我进行高低16位混合运算,是可以的,这样可以保证尽量减少高区位的特征。那么,为什么选择用异或运算呢,我用与、或、非运算不行吗?

这是有一定的道理的。我们看一个表格,就能明白了。

可以看到两个值进行与运算,结果会趋向于0;或运算,结果会趋向于1;而只有异或运算,0和1的比例可以达到1:1的平衡状态。(非呢?别扯犊子了,两个值怎么做非运算。。。)

所以,异或运算之后,可以让结果的随机性更大,而随机性大了之后,哈希碰撞的概率当然就更小了。

以上,就是为什么要对一个hash值进行高低位混合,并且选择异或运算来混合的原因。

resize() 扩容机制

在上边 put 方法中,我们会发现,当数组为空的时候,会调用 resize 方法,当数组的 size 大于阈值的时候,也会调用 resize方法。 那么看下 resize 方法都做了哪些事情吧。

final Node<K,V>[] resize() {\n //旧数组\n Node<K,V>[] oldTab = table;\n //旧数组的容量\n int oldCap = (oldTab == null) ? 0 : oldTab.length;\n //旧数组的扩容阈值,注意看,这里取的是当前对象的 threshold 值,下边的第2种情况会用到。\n int oldThr = threshold;\n //初始化新数组的容量和阈值,分三种情况讨论。\n int newCap, newThr = 0;\n //1.当旧数组的容量大于0时,说明在这之前肯定调用过 resize扩容过一次,才会导致旧容量不为0。\n //为什么这样说呢,之前我在 tableSizeFor 卖了个关子,需要注意的是,它返回的值是赋给了 threshold 而不是 capacity。\n //我们在这之前,压根就没有在任何地方看到过,它给 capacity 赋初始值。\n if (oldCap > 0) {\n //容量达到了最大值\n if (oldCap >= MAXIMUM_CAPACITY) {\n threshold = Integer.MAX_VALUE;\n return oldTab;\n }\n //新数组的容量和阈值都扩大原来的2倍\n else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&\n oldCap >= DEFAULT_INITIAL_CAPACITY)\n newThr = oldThr << 1; // double threshold\n }\n //2.到这里,说明 oldCap <= 0,并且 oldThr(threshold) > 0,这就是 map 初始化的时候,第一次调用 resize的情况\n //而 oldThr的值等于 threshold,此时的 threshold 是通过 tableSizeFor 方法得到的一个2的n次幂的值(我们以16为例)。\n //因此,需要把 oldThr 的值,也就是 threshold ,赋值给新数组的容量 newCap,以保证数组的容量是2的n次幂。\n //所以我们可以得出结论,当map第一次 put 元素的时候,就会走到这个分支,把数组的容量设置为正确的值(2的n次幂)\n //但是,此时 threshold 的值也是2的n次幂,这不对啊,它应该是数组的容量乘以加载因子才对。别着急,这个会在③处理。\n else if (oldThr > 0) // initial capacity was placed in threshold\n newCap = oldThr;\n //3.到这里,说明 oldCap 和 oldThr 都是小于等于0的。也说明我们的map是通过默认无参构造来创建的,\n //于是,数组的容量和阈值都取默认值就可以了,即 16 和 12。\n else { // zero initial threshold signifies using defaults\n newCap = DEFAULT_INITIAL_CAPACITY;\n newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);\n }\n //③ 这里就是处理第2种情况,因为只有这种情况 newThr 才为0,\n //因此计算 newThr(用 newCap即16 乘以加载因子 0.75,得到 12) ,并把它赋值给 threshold\n if (newThr == 0) {\n float ft = (float)newCap * loadFactor;\n newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?\n (int)ft : Integer.MAX_VALUE);\n }\n //赋予 threshold 正确的值,表示数组下次需要扩容的阈值(此时就把原来的 16 修正为了 12)。\n threshold = newThr;\n @SuppressWarnings({rawtypes,unchecked})\n Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];\n table = newTab;\n //如果原来的数组不为空,那么我们就需要把原来数组中的元素重新分配到新的数组中\n //如果是第2种情况,由于是第一次调用resize,此时数组肯定是空的,因此也就不需要重新分配元素。\n if (oldTab != null) {\n //遍历旧数组\n for (int j = 0; j < oldCap; ++j) {\n Node<K,V> e;\n //取到当前下标的第一个元素,如果存在,则分三种情况重新分配位置\n if ((e = oldTab[j]) != null) {\n oldTab[j] = null;\n //1.如果当前元素的下一个元素为空,则说明此处只有一个元素\n //则直接用它的hash()值和新数组的容量取模就可以了,得到新的下标位置。\n if (e.next == null)\n newTab[e.hash & (newCap - 1)] = e;\n //2.如果是红黑树结构,则拆分红黑树,必要时有可能退化为链表\n else if (e instanceof TreeNode)\n ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);\n //3.到这里说明,这是一个长度大于 1 的普通链表,则需要计算并\n //判断当前位置的链表是否需要移动到新的位置\n else { // preserve order\n // loHead 和 loTail 分别代表链表旧位置的头尾节点\n Node<K,V> loHead = null, loTail = null;\n // hiHead 和 hiTail 分别代表链表移动到新位置的头尾节点\n Node<K,V> hiHead = null, hiTail = null;\n Node<K,V> next;\n do {\n next = e.next;\n //如果当前元素的hash值和oldCap做与运算为0,则原位置不变\n if ((e.hash & oldCap) == 0) {\n if (loTail == null)\n loHead = e;\n else\n loTail.next = e;\n loTail = e;\n }\n //否则,需要移动到新的位置\n else {\n if (hiTail == null)\n hiHead = e;\n else\n hiTail.next = e;\n hiTail = e;\n }\n } while ((e = next) != null);\n //原位置不变的一条链表,数组下标不变\n if (loTail != null) {\n loTail.next = null;\n newTab[j] = loHead;\n }\n //移动到新位置的一条链表,数组下标为原下标加上旧数组的容量\n if (hiTail != null) {\n hiTail.next = null;\n newTab[j + oldCap] = hiHead;\n }\n }\n }\n }\n }\n return newTab;\n}

上边还有一个非常重要的运算,我们没有讲解。就是下边这个判断,它用于把原来的普通链表拆分为两条链表,位置不变或者放在新的位置。

if ((e.hash & oldCap) == 0) {} else {}

我们以原数组容量16为例,扩容之后容量为32。说明下为什么这样计算。

还是用之前的hash值举例。

//e.hash值\n0110 1101 0110 1111 0110 1110 0010 1000\n//oldCap值,即16\n0000 0000 0000 0000 0000 0000 0001 0000 \n//做与运算,我们会发现结果不是0就是非0,\n//而且它取决于 e.hash 二进制位的倒数第五位是 0 还是 1,\n//若倒数第五位为0,则结果为0,若倒数第五位为1,则结果为非0。\n//那这个和新数组有什么关系呢?\n//别着急,我们看下新数组的容量是32,如果求当前hash值在新数组中的下标,则为\n// e.hash &( 32 - 1) 这样的运算 ,即 hash 与 31 进行与运算,\n0110 1101 0110 1111 0110 1110 0010 1000 \n&\n0000 0000 0000 0000 0000 0000 0001 1111 \n=\n0000 0000 0000 0000 0000 0000 0000 1000\n//接下来,我们对比原来的下标计算结果和新的下标结果,看图

看下面的图,我们观察,hash值和旧数组进行与运算的结果 ,跟新数组的与运算结果有什么不同。

会发现一个规律:

若hash值的倒数第五位是0,则新下标与旧下标结果相同,都为 0000 1000

若hash值的倒数第五位是1,则新下标(0001 1000)与旧下标(0000 1000)结果值相差了 16 。

因此,我们就可以根据 (e.hash & oldCap == 0) 这个判断的真假来决定,当前元素应该在原来的位置不变,还是在新的位置(原位置 + 16)。

如果,上边的推理还是不明白的话,我再举个简单的例子。

18%16=2 18%32=18\n34%16=2 34%32=2\n50%16=2 50%32=18

怎么样,发现规律没,有没有那个感觉了?

计算中的18,34 ,50 其实就相当于 e.hash 值,和新旧数组做取模运算,得到的结果,要么就是原来的位置不变,要么就是原来的位置加上旧数组的长度。

get()方法

有了前面的基础,get方法就比较简单了。

public V get(Object key) {\n Node<K,V> e;\n //如果节点为空,则返回null,否则返回节点的value。这也说明,hashMap是支持value为null的。\n //因此,我们就明白了,为什么hashMap支持Key和value都为null\n return (e = getNode(hash(key), key)) == null ? null : e.value;\n}\n\nfinal Node<K,V> getNode(int hash, Object key) {\n Node<K,V>[] tab; Node<K,V> first, e; int n; K k;\n //首先要确保数组不能为空,然后取到当前hash值计算出来的下标位置的第一个元素\n if ((tab = table) != null && (n = tab.length) > 0 &&\n (first = tab[(n - 1) & hash]) != null) {\n //若hash值和key都相等,则说明我们要找的就是第一个元素,直接返回\n if (first.hash == hash && // always check first node\n ((k = first.key) == key || (key != null && key.equals(k))))\n return first;\n //如果不是的话,就遍历当前链表(或红黑树)\n if ((e = first.next) != null) {\n //如果是红黑树结构,则找到当前key所在的节点位置\n if (first instanceof TreeNode)\n return ((TreeNode<K,V>)first).getTreeNode(hash, key);\n //如果是普通链表,则向后遍历查找,直到找到或者遍历到链表末尾为止。\n do {\n if (e.hash == hash &&\n ((k = e.key) == key || (key != null && key.equals(k))))\n return e;\n } while ((e = e.next) != null);\n }\n }\n //否则,说明没有找到,返回null\n return null;\n}

为什么HashMap链表会形成死循环

准确的讲应该是 JDK1.7 的 HashMap 链表会有死循环的可能,因为JDK1.7是采用的头插法,在多线程环境下有可能会使链表形成环状,从而导致死循环。JDK1.8做了改进,用的是尾插法,不会产生死循环。

那么,链表是怎么形成环状的呢?

关于这一点的解释,我发现网上文章抄来抄去的,而且都来自左耳朵耗子,更惊奇的是,连配图都是一模一样的。(别问我为什么知道,因为我也看过耗子叔的文章,哈哈。然而,菜鸡的我,那篇文章,并没有看懂。。。)

我实在看不下去了,于是一怒之下,就有了这篇文章。我会照着源码一步一步的分析变量之间的关系怎么变化的,并有配图哦。

我们从 put()方法开始,最终找到线程不安全的那个方法。这里省略中间不重要的过程,我只把方法的跳转流程贴出来:

//添加元素方法 -> 添加新节点方法 -> 扩容方法 -> 把原数组元素重新分配到新数组中\nput() --> addEntry() --> resize() --> transfer()

问题就发生在 transfer 这个方法中。

我们假设,原数组容量只有2,其中一条链表上有两个元素 A,B,如下图

现在,有两个线程都执行 transfer 方法。每个线程都会在它们自己的工作内存生成一个newTable 的数组,用于存储变化后的链表,它们互不影响(这里互不影响,指的是两个新数组本身互不影响)。但是,需要注意的是,它们操作的数据却是同一份。

因为,真正的数组中的内容在堆中存储,它们指向的是同一份数据内容。就相当于,有两个不同的引用 X,Y,但是它们都指向同一个对象 Z。这里 X、Y就是两个线程不同的新数组,Z就是堆中的A,B 等元素对象。

假设线程一执行到了上图1中所指的代码①处,恰好 CPU 时间片到了,线程被挂起,不能继续执行了。 记住此时,线程一中记录的 e = A , e.next = B。

然后线程二正常执行,扩容后的数组长度为 4, 假设 A,B两个元素又碰撞到了同一个桶中。然后,通过几次 while 循环后,采用头插法,最终呈现的结构如下:

此时,线程一解挂,继续往下执行。注意,此时线程一,记录的还是 e = A,e.next = B,因为它还未感知到最新的变化。

我们主要关注图1中标注的①②③④处的变量变化:

/**\n* next = e.next\n* e.next = newTable[i]\n* newTable[i] = e;\n* e = next;\n*/\n\n//第一次循环,(伪代码)\ne=A;next=B;\ne.next=null //此时线程一的新数组刚初始化完成,还没有元素\nnewTab[i] = A->null //把A节点头插到新数组中\ne=B; //下次循环的e值

第一次循环结束后,线程一新数组的结构如下图:

然后,由于 e=B,不为空,进入第二次循环。

//第二次循环\ne=B;next=A; //此时A,B的内容已经被线程二修改为 B->A->null,然后被线程一读到,所以B的下一个节点指向A\ne.next=A->null // A->null 为第一次循环后线程一新数组的结构\nnewTab[i] = B->A->null //新节点B插入之后,线程一新数组的结构\ne=A; //下次循环的 e 值

第二次循环结束后,线程一新数组的结构如下图:

此时,由于 e=A,不为空,继续循环。

//第三次循环\ne=A;next=null; // A节点后边已经没有节点了\ne.next= B->A->null // B->A->null 为第二次循环后线程一新数组的结构\n//我们把A插入后,抽象的表达为 A->B->A->null,但是,A只能是一个,不能分身啊\n//因此实际上是 e(A).next指向发生了变化,A的 next 由指向 null 改为指向了 B,\n//而 B 本身又指向A,因此A和B互相指向,成环\nnewTab[i] = A->B 且 B->A \ne=next=null; //e此时为空,结束循环

第三次循环结束后,看下图,A的指向由 null ,改为指向为 B,因此 A 和 B 之间成环。

这时,有的同学可能就会问了,就算他们成环了,又怎样,跟死循环有什么关系?

我们看下 get() 方法(最终调用 getEntry 方法),

可以看到查找元素时,只要 e 不为空,就会一直循环查找下去。若有某个元素 C 的 hash 值也落在了和 A,B元素同一个桶中,则会由于, A,B互相指向,e.next 永远不为空,就会形成死循环。

结语

如果本文对你有用,欢迎关注我哦~

作者:烟雨星空链接:https://juejin.im/post/5e93ca9d6fb9a03c3176248f

版权声明:CosMeDna所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系删除!

本文链接://www.cosmedna.com/article/664851367.html